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Abstract:

The axial contraction of linear pinches with racetrack-shaped and elliptic
cross sections is studied by §W-=-analysis near the equilibrium shape. A surface
current profile and a fixed plasma cross-section area are assumed. It is shown
for the corresponding special perturbation that §W is given by the variation of
the surface energy (§W = 5WS = —él— Bp2 §b2), and that §W is nearly inde-
pendent of the shape of the plasma (racetrack or ellipse). The axial oscillation

1
1 = _E— H
frequency is found to be W 2T WD?- with a constant C< 1. The model

correctly predicts the BP and Pp - dependences of the experimental belt-pinch
results and yields theoretical max-values a factor of 2 above the experimental

ones.

This work was performed as part of the joint research programme between the

Institut fur Plasmaphysik, Garching and Euratom.




1. INTRODUCTION

Axial contraction (parallel to the major torus axis) is observed in pinches with non-
circular plasma cross sections, e.g. the belt-pinch. This occurs after the plasma has
been produced in a non-equilibrium shape (with too large a plasma-wall distance) by
shock heating and adiabatic compression, and it represents a transition to the equi-
librium shape. This can cause a prolongation of the dynamic phase far beyond the
time of crowbarring of the toroidal field Bf and of the poloidal field Bp. The ex-
perimental period with stationary conditions can be considerably reduced by this

process.

In this paper, the axial oscillations around the equilibrium shape of linear pinches

with racetrack-shaped and elliptic cross-sections are studied by § W - analysis.

2. 5 W -ANALYSIS OF THE AXIAL CONTRACTION FOR A RACETRACK-SHAPED

CROSS-SECTION

Analysis in linear geometry is certainly sufficient because the toroidal curvature
of the experimental plasma should not be important for these oscillations. A sharp
pressure piofile with surface currents parallel to the axis of the straight pinch is assumed
( BP =0 and B = 0 in the plasma). The equilibrium is produced by image currents in
parallel, perfectly conducting walls (see Fig.1) and is theoretically found for half-
axis ratios above 2 at a plasma sheath thickness equal to one half of the wall distance/1/.
At first a racetrack-shaped plasma cross section is assumed in agreement with the ex-
periment (belt-pinch) with a half-axis ratio that varies during the axial oscillations
(see Fig.1). At the equilibrium d = a ( a being the minor half-axis) and h = b (b being
the major half-axis) hold. In the neighbourhood of the equilibrium we define d = a + g,
andh=b + gy For a sharp pressure profile the variation of the energy § W has three
contributions: & Wo (plasma volume), & Ws (plasma surface) and § Wv (vacuum field

region). It holds that

5W=6Wp+ 5WS+ 5WV (M

According to /2/ the plasma contribution reads




-2-

SW = ZJ { Lo ,?’ + g GxBEx sﬁmsg)g.epwp(sg)z}drp @
where & B is derived from Faraday’s induction law and is given by

5§B= €7x(§: x B) )
Here é: is the periurbation vector, y is the adiabatic exponent and dT : is a volume
element in the plasma.

For the variation of the surface energy one obtains

1 2 ~ Bz' =
] . oo o
J

§ 0 is the perfurbation vector perpendicular to the surface element dS and is
directed outwards. The expression { A ) denotes the jump of the quantity A

perpendicular to the surface and is defined as

-

lim B
(ADix [A(gn)—M—gn)] ®)

gn-—>0

For p, B and dS the undisturbed quantities must be inserted. § Ws represents the work
that has to be done against the force due to the surface currents, when the interface

between plasma and vacuum field region is displaced by é :

Finally, the variation of the vacuum field energy reads

1
éwv= 2 J

where dL is a volume element of the vacuum field region. In the experiment

2
(§B)
4T dtv (6)

B >> B holds, i.e. the plasma is confined by B,. After crowbarring B is constant
in time cnd in contrast to Bp does not vary with the axnal oscillations. The conse-
quence of a constant B, is a fixed plasma cross-sectional area F For large half-
axis ratios ( _%_, > 3) the equilibrium shape of the plasma approxnmates a racetrack.
According to Fig. 1 its cross-sectional area is given by

L, 2,h T
Fo—4d(d—+ o 1)

For 2 >>0.2 (e.g. —%—- > 3) Fo can be approximated very well by Fo= 4 dh =4 ab.

From this it follows that in the neighbourhood of the equilibrium
e a b -1
€a

1+ —/)
and for

b

Sb
b << 1 one obtains
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Thus, the perturbation of the surface is defined for which the §W - analysis of a

field-free plasma will be performed. If the interior of the plasma is not field-free, the

perturbation function in the plasma must be specified in detail.

s a = A el - P TS :
Substituting B = Bf + Bp in Eq. (3) yields aterm v x (& x Bf) that vanishes for the
special perturbation defined above. Moreover, it can be shown that it also holds

- Q. o
that v x (€ x B ) = 0. Consequently, 6-!; and 6Wv vanish in the vacuum field region.

-—
In the field-free plasma, too, §B is equal to zero.

For the special perturbation -V‘E= 0 holds and this yields 6Wp = 0 since for a
fixed Fo no compressional work is done against the plasma pressure. Therefore, in
the second order considered here W is determined by a variation of the surface energy

6WS alone.

The expression in pointed brackets in Eq. (4) represents a measure of the magnitude

of the surface tension. Generally, the condition for MHD equilibrium reads

Vp=ixB=E (Bv) B - V&
* a B2 1 2a=2
v (p+ 8—”)= ZF(B V) B (8)

Thus, the surface tension is due to the (B$ ) .E-force of the poloidal field that has a
component normal to the plasma surface only in regions with curved field lines. This
means for the racetrack-shape in particular fhat@ 5‘) B-forces perpendicular to the
plasma surface only exist at the semicircular ends. The poloidal field on the surface
can be approximated at the ends by the field on a cylinder, especially, because in
equilibrium the current density on the racetrack is constant like that on a cylinder.

For the normal component of this force one thus obtains
-Bz {1 _Egz>
iy (P grslife o T

According to Eq. (5) one finds < Bp2>= sz,‘
where Bp is the value on the surface that is constant for the equilibrium shape. This
yields

2
R o2
oW, = 5 —2 (£ 2as




The normal component of 5 at the ends of the racetrack is calculated by means of
Fig. 1. For the half-axis ratios that lead to a racetrack-shape £ <<€ holds so that
S

E is essentially an outward displacement of the ends by the distance & . According to

Fig. 1 one obtains B8, sin o and the integral

& 7.
o
Jn N sinZ o adg = a Eb‘ﬂ
a=0
This finally yields

12,2
sW= 6W = g B &

(9)
This expression, in fact, exceeds 5Wv by one order of - magnitude. This can be seen
from a detailed computation of §W,/1/ that yields

1 2 a 2
sW, ~ g By B &y

It is concluded that the axial oscillations around the equilibrium shape are caused

by a variation of the energy at the plasma surface.

For a conservative system, i.e. a system with no dissipation of energy and no exchange of

energy with the outer electrical circuit, one obtains

2
é]'fp(%%f‘) dr, + oW =0 (10

This equation can be used to determine the frequency of the axial oscillations (wqx)

by replacing the kinetic energy by

2 dg z
P pagy? oo L e e i b)
Z!Yp(dt) d—rp— 2 CP, (dt (11)
where C is a dimensionless constant factor smaller than unity, and o is the line mass.

The real motion of the plasma is replaced by the oscillation gb (wax t) of a mass
CPE that is concentrated at the ends of the racetrack. For a harmonic oscillation
gb - (gb)o &

iw t
ax



one finds by substituting Eqs.(9) and (11) in Eq. (10)

] 2_2 1 _
9 Cpe Wax 5 * 8 Bp gb =4
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3. sW - ANALYSIS OF THE AXIAL CONTRACTION FOR AN ELLIPTIC CROSS SECTION

This section deals with the question whether the variation of energy sensitively depends
on the shape of the cross-section or not. For this purpose 5WS is computed for an elliptic

cross-section (see Fig.2). The calculation is performed in elliptic coordinates:

x = ccosh¥ cos ¥
y = csinhV sin y
z

= Z

For the ¥ ,  and z-components we set the indices 1, 2 and 3 respectively. For

22 = c2 (sin h2 v+ sin2 ¥) and h32 = 1.
2

elliptic coordinates it holds that h]2 =h
Moreover, we set 82 = Bp and B3 = B’r’ i.e. B2 = 82 + B32. For the equilibrium flux

surface ¥ = v in particular one obtains

X = ccosh\yocosx= b cos
y = csin h\UosinX =asin y (13)
zZ = ‘Z
S o
The computation of | x B in elliptic coordinates yields an identity that corresponds to
Eq. (8):
2 B )
_.]_ .b_ ( + .B_) —iis 1 2 bh]
(hEa ey a2 v
1
dh 2 ;
Since it holds that L c2 SIE h{2y) , one obtains
oy 1
2 2
B i c 2 sin h (2v)
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A perturbation of the ellipse ¥ = Y, is now assumed that is analogous to the m = 2 per-

turbation of a circle and that reads




E= r(x)e cos(2x)

and

r(y) = N x2+y2 = '\/b2 coszx + 02 sin2 X

i.e. E is proportional to the length of the radius vector. According to qu 3)

E=b. e—gbforx Oand E=-ae=§_ for y = 2 Thlsyleldse—-—b—g_
S
- —%, i.e. the condition for a constant cross-sechondl area of the ellipses for Tb-<< 1.

This is identical with Eq. (7). Forx = % one finds € = 0, and this marks the points

of intersection of the ellipse ¥ = ‘i’o with the perturbed ellipse. According to Eq.(4)

the scalar product of the gradient and 3 is given by
2
B ¢ : ™
(vn (p+ 8?)> dS in the range 0 <% < 7= and
2
B . T ™
(v, (p + 5 )} dS in the range sposy soeplus From Egs. (5) and (14) one

obtains 2 2

(o (bt &) ymn oo 2 dnhi2rd

Substituting this in Eq. (4) yields with dS = h]( ‘i’o) d¥x

2 2 sin h(%¥o) d

B
2
h, (¥ )

=1 -
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s
surface

The following identities are easily proven:

c2 sin h (2‘4’0) =2ab

h](wo) e a«.,/;oszx+ (%)2 sinzx

E = gb'\,fcos2x + (%)2 sinZX cos (2X)

With g, = sin o, (see Fig.2) one finds
[coszx + (%)2 sinzx] cosz(ZX) sin2 ady

02 l'coszx + @2 sinzx ]

o 2.2
6Ws_ 8rr i Bp‘ gb J‘

surface



The angle ¢ at the point P(x,y) is given by

a = Ol] 4'(12 and

- ol e
ay tan (Io tan’X ) and

= ’ron—] G cot X))

a2
This yields 2
. 3 A
sinfa = 55— and
A" + sin” ()
a
A= —EB_ (15)

1= ()

Finally, one obtains

_ 1 2 _2 b
6WS— 8 Bp Eb .F(—a% (16)
and %r %
a3 owan | ewal
c 22 fown | cwe
X=0 = x
where G(y ) is given by
G(x) = coszx+(g)2 sinzx A2 c052 (2y)
COSZX + (Etz)2 sinzx A2 + sin2(2 X)

Apart from the factor F (%) this result is identical with Eq. (9). Numerical integration

yields the curve in Fig. 3. It is seen that F (g-) is about 0.8 for QE =3 and 0.9 forg =5.

Obviously 6Ws is nearly independent of the shape of the plasma (e lliptic or racetrack-like

cross-section), and Eq. (12) is valid.




4, COMPARISON WITH EXPERIMENTAL RESULTS

The theoretically derived frequency shall now be compared with the experiment
(belt=pinch 1) that exhibits this axial contraction with a fixed plasma cross-sectional
areda. On the basis of smear pictures of this motion the dependence of W, on B
is studied for a filling pressure Py = 35 mtorr (D2) and for a maximum toroidal
field Bt = 6.5kG. The result is shown in Fig.4. It is found that W scales in
proportion with Bp at a fixed line mass. The variation of W e with P, also agrees
well with the theoretical dependence in Eq. (12). If C is set equal to 0.7 in Eq.(lz)y
one obtains absolute wax-value_s that exceed the experimental results just
by a factor of 2. The agreement is sufficient if one takes into account that the
experiment differs from the idealized assumptions of the model calculation in
several respects. Thus, for example, the experimental plasma profile is diffuse,
the plasma is not field-ffee, and the axial oscillation is strongly damped. More-
over, the experimental motion of the plasma ends is linear in time rather than
harmonic. The reason for this is that the mass at the ends is picked up during con-

traction, and this corresponds to a time-dependent quantity C.

It shall be noted here that a compressional wave due to Bf in the direction of
the large half-axis should roughly have a time scale 1~ o (vA Alfvén velocity),
which is found experimentally. However, the experimental ﬁependence of W ON

Bp excludes this process.

5. SUMMARY

The axial oscillations around the equilibrium shape of a linear pinch (analogous
to an m = 2 mode) have been studied by a W = analysis for a racetrack-shaped and
for an elliptic cross-section. A surface current profile and a fixed plasma cross-
sectional area are assumed. It has been shown that 6W i Is glven by §W , i.e. by

the variation of the surface energy (§W = 6W ]

p gb ) Moreover, it has

been demonstrated that §W is nearly mdependeni’ of the shape of the plasma (racetrack

or ellipse). For the axial oscillation frequency W —L with a constant
2'\;C s/

C< 1 is found.




A comparison with experimental belt-pinch results has shown that the Bp and Py
dependences of w,, are predicted correctly by the model , and that the theoretical

wcx-values exceed the experimental ones by a factor of 2.

Acknowledgements

The author wishes to thank H.Krause and R.Wunderlich for their cooperation.

References:

/1/ Becker,G., Nucl. Fusion, (to be published)

/2/ Schmidt, G., Physics of High Temperature Plasmas,
Academic Press, New York (1966), p.125

/3/ Spitzer,L., Physics of Fully lonized Gases, Interscience Publishers, New York
(1962), p.96




0 -

Figure captions:
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Fig.

Racetrack-shaped equilibrium plasma cross=section and perturbed surface.
Elliptic equilibrium plasma cross=section and perturbed surface.

: b - y
Factor F in 6WS versus — for elliptic cross-sections.

Experimental dependence of W, °on Bp for a filling pressure Py ™ 35 mtorr(Dz)

and a maximum toroidal field Bf =6.5kG.



SN

symmetry
plane

detail

EIG. 1




FIG. 2



0.4-

072

racetrack -shape

— — — G— — — S— — S— — —— — ———

ellipses




*wax [10°s")

L 5  BplkG]

FIG. 4




	IPP 1_144 Deckblatt
	IPP 1_144 Text

